Filtration and evaporation of the solvent gave 90 mg of 15 as a colorless crystallization product: sublimation at 80-90 °C (1 torr); mp (sealed tube) 134–135 °C; IR 3630 cm⁻¹; ¹H NMR δ 1.00 (s, 3 H), 1.06 (s, 3 H), 2.53 (s, 1 H), 4.33 (sept, 1 H).

9.9-Dimethylbicyclo[3.3.1]nonan-3-endo-ol (16). The hydrogenation of 14 was achieved by stirring the reaction mixture under hydrogen atmosphere for 14 h. Usual workup and recrystallization from aqueous methanol afforded colorless needles: mp 41 °C dec; IR 3600 cm⁻¹; ¹H NMR δ 0.88 (s, 3 H), 1.00 (s, 3 H), 4.08 (m, 1 H).

9,9-Dimethylbicyclo[3.3.1]nonan-3-one (12). Hydrogenation of 165 mg of 11 in the same conditions gave 160 mg of saturated ketone 12 as oily product which crystallized slowly on cooling: sublimation at 80-90 °C (1 torr); mp 73-75 °C; IR 1715 cm⁻¹; ¹H NMR δ 1.16 (s, 6 H).

9,9-Dimethylbicyclo[3.3.1]nonan-3-one Ethylene Acetal (17). A mixture of 100 mg of 12, 10 mL of benzene, 10 mg of p-TSA, and 0.1 mL of 1,2-ethanediol was refluxed for 6 h. The usual workup gave 140 mg of crude product as a mixture of 17 along with the starting material. Separation by flash chromatography yielded 77 mg of 17 as a colorless oil: IR 1095 cm⁻¹; ¹H NMR § 1.05 (s, 6 H), 3.56 (m, 4 H). 12 (21 mg) was obtained as colorless crystals.

9,9-Dimethylbicyclo[3.3.1]nonane-3,7-dione (5). A solution of the Michael adduct 3 (2.2 g) and NaOH (2.0 g) in methanol (50 mL) and water (50 mL) was refluxed overnight under argon,

cooled, and acidified with 10% aqueous HCl. The aqueous solution was extracted with ethyl acetate to yield 1.25 g of white solid product. Recrystallization from ether gave 5 as colorless crystals: mp 127–128 °C; IR 1710 cm⁻¹; ¹H NMR δ 1.40 (s, 6 H); ¹³C NMR δ 26.2 (q), 32.7 (s), 41.2 (d), 45.1 (t), 208.7 (s). Anal. Calcd for C₁₁H₁₆O₂: C, 73.30; H, 8.95. Found: C, 73.05; H, 8.80.

Sodium Borohydride Reduction of the Diketone 5. The Hemiacetal 6. Sodium borohydride (18 mg, 0.45 mmol) was added to a stirred solution of the diketone 5 (320 mg, 1.78 mmol) in 95% ethanol (5 mL). After 20 min, water (1 mL) was added and the mixture refluxed gently for 15 min. More water was added, and the solution extracted with ether, which was then dried and evaporated. Flash chromatography of the crude product gave 200 mg of the hemiacetal 6 which crystallized from pentane-ether: mp (sealed tube) 192–193 °C; IR 3600, 1190 cm⁻¹; ¹H NMR δ 1.10 (s, 6 H), 4.23 (m, 1 H), 4.35 (s, 1 H). Anal. Calcd for $C_{11}H_{18}O_2$: C, 72.49; H, 9.96. Found: C, 72.12; H, 9.64.

Registry No. 1, 1073-14-9; 2, 1830-54-2; 3 (isomer 1), 94519-31-0; 3 (isomer 2), 94519-32-1; 3 (7-ketal), 94519-43-4; 4, 37741-10-9; 5, 37741-08-5; 6, 94519-33-2; 7, 94519-34-3; 8, 94519-35-4; 9, 94519-36-5; 9 (thiocarbonate), 94519-44-5; 10, 94519-37-6; 10 (ketal), 94519-45-6; 11, 94519-38-7; 12, 75984-11-1; 13, 94519-39-8; 14, 94519-40-1; 15, 75984-06-4; 16, 75984-16-6; 17, 94519-41-2; 18, 75984-22-4; 19, 94519-42-3; 1,2-ethanediol, 107-21-1; p-tolyl chlorothioformate, 937-63-3; diethyl chlorophosphate, 814-49-3.

Substituent Effects on ¹³C NMR Chemical Shifts and One-Bond ¹³C-¹³C **Coupling Constants in 1- and 4-Substituted Diamantanes**

V. V. Krishnamurthy, Joseph G. Shih, and George A. Olah*

Donald P. and Katherine B. Loker Hydrocarbon Research Institute and Department of Chemistry, University of Southern California, Los Angeles, California 90089

Received July 19, 1984

One-bond ¹³C-¹³C NMR coupling constants in a series of 1- and 4-substituted diamantanes were measured at natural abundance by using the INADEQUATE pulse sequence. The substituent effect on 13 C chemical shifts (SCS) and ${}^{13}C^{-13}C$ coupling constants (SCC) was analyzed in terms of the electronegativity and steric effects of the substituents and in terms of the number and type of the gauche interaction. The trends observed in the $C_{\alpha}-C_{\beta}$, $C_{\beta}-C_{\gamma_{anti}}$, and $C_{\beta}-C_{\gamma_{ayn}}$ coupling constants are in accord with results obtained on 1- and 2-substituted adamantanes.

Recent advances in instrumentation and the availability of high-field NMR spectrometers have greatly increased the scope and utility of ¹³C-¹³C NMR coupling constants in structural studies. While recent theoretical studies^{1,2} have reproduced certain qualitative trends in experimental values, they are still far from giving quantiative agreements. Thus, there has been considerable effort to obtain more extensive experimental values of $J_{\rm CC}^{3-6}$ and to find empirical correlations with other molecular properties which are dependent on the same electronic characteristic of the molecules.

The basic problem in observing the ¹³C-¹³C coupling constants in the NMR spectra of compounds with natural abundance ¹³C is that of identifying the appropriate weak satellite signals on the sides of strong ¹³C lines. The IN-ADEQUATE pulse sequence technique developed by Freeman et al.⁷ enables one to investigate one-bond and long-range carbon-carbon couplings by suppressing the strong signals from molecules with isolated ¹³C nucleus.

Although substituent effects on $J_{\rm CC}$ values have been studied^{2,8,9} to some extent, mostly with ¹³C-labeled compounds, studies of stereochemical effects on $J_{\rm CC}$ values

New York, 1972; p 370 and references therein.

⁽¹⁾ Engelmann, A. R.; Scuseria, G. E.; Contreras, R. H. J. Magn. Reson. 1982, 80, 21.

⁽²⁾ Gray, G. A.; Ellis, P. D.; Traticante, D. D.; Maciel, G. E. J. Magn.

⁽a) Wray, O. A.; Edis, F. D., Fraticante, D. D., Matter, G. E. J. Magn. Reson. 1969, 1, 41.
(a) Wray, V. Prog. Nucl. Magn. Reson. Spectrosc. 1979, 13, 177.
(4) (a) Hansen, P. W. In "Annual Reports on NMR Spectroscopy"; Webb, G. A., Ed.; Academic Press: New York, 1981; Vol. 11A, p 65. (b) Webb, G. A., Ed.; Academic Press: New York, 1981; Vol. 11A, p 99.

⁽⁵⁾ Krishnamurthy, V. V.; Prakash, G. K. S.; Iyer, P. S.; Olah, G. A. J. Am. Chem. Soc. 1984, 106, 7068.

⁽⁶⁾ Olah, G. A.; Iyer, P. S.; Prakash, G. K. S.; Krishnamurthy, V. V. J. Am. Chem. Soc. 1984, 106, 7073.

^{(7) (}a) Bax, A.; Freeman, R.; Kempsell, S. P. J. Am. Chem. Soc. 1980, 102, 4849. (b) Bax, A.; Freeman, R.; Kampsell, S. P. J. Magn. Reson. 1980, 41, 349. (c) Bax, A.; Freeman, R. J. Magn. Reson. 1980, 41, 507.
(8) Litchman, W. M.; Grant, D. M. J. Am. Chem. Soc. 1967, 89, 6775.
(9) Stothers, J. B. "Carbon-13 NMR Spectroscopy"; Academic Press:

Table I. ¹³C NMR Chemical Shifts in 1-Substituted Diamantanes (1)^a

									• •			
X	δ_{C_1}	δ_{C_2}	δ _{C3}	δ _{C4}	δ _{C5}	δ_{C_6}	δ _{C7}	δ _{C8}	δ _{C9}	$\delta_{C_{13}}$	other	
 Н	37.7	37.7	38.4	26.0	38.4	37.7	37.7	38.4	26.0	38.4		
CH_3	34.0	42.1	33.2	26.2	39.0	37.6	38.6	38.5	28.1	46.9	26.5	
OCH_3	73.7	39.5	32.0	25.0	37.8	36.8	39.5	37.2	29.7	39.2	46.3	
F	94.4	41.7	32.4	24.8	37.5	36.3	40.6	36.9	30.6	43.0		
Cl	76.5	44.9	33.3	25.0	38.1	36.2	40.8	37.1	30.7	49.3		
Br	78.7	46.0	34.6	25.1	38.5	36.4	41.3	37.1	31.3	51.5		
Ι	70.4	48.0	37.3	25.4	39.2	36.7	41.0	37.4	31.6	55.6		

^a The chemical shifts measured in CDCl₃ at room temperature are in ppm with respect to external Me₄Si and are accurate to ± 0.1 ppm.

Table II. ¹³C NMR Chemical Shifts in 4-Substituted Diamantanes (2)^a

X	δ_{C_4}	δ_{C_3}	δ_{C_2}	δ_{C_1}	δ_{C_8}	δ_{C_9}	other	
Н	26.0	38.4	37.7	37.7	38.4	26.0		
CH_3	27.7	45.4	38.3	36.9	38.0	25.9	30.3	
OCH ₃	70.5	40.8	39.1	36.8	36.3	25.2	47.5	
F	92.4	42.9	40.3	36.8	36.2	25.4		
Cl	67.2	47.8	40.2	35.5	36.6	25.0		
Br	65.2	49.5	41.3	35.6	36.9	25.0		
I	49.4	52.8	41.9	35.6	37.1	25.0		

^a The chemical shifts measured in $CDCl_3$ at room temperature are in ppm with respect to external Me₄Si and are accurate to ± 0.1 ppm.

Table III. One-Bond ¹³C-¹³C Coupling Constants in 1-Substituted Diamantanes (1)^a

	J_{i}	α,β	J_{eta}	γanti	$J_{\beta\gamma_{mm}}$		J_{i}	γ,δ		J	δ,ε	
х	$J_{1,2}$	$J_{1,13}$	$J_{2,7}$	$J_{9,13}$	$J_{2,3}$	$J_{3,4}$	$J_{6,7}$	$J_{7,8}$	$J_{8,9}$	$J_{4,5}$	$J_{5,6}$	other
Н		ь		31.6	ь	31.6		ь	31.6	31.6	b	
CH_3	30.7	31.9	30.6	31.7	32.2	31.7	Ь	Ь	31.7	31.6	Ь	37.2
OCH_3	35.1	34.6	Ь	31.6	32.5	31.5	30.7	32.1	31.6	31.6	b	
F	35.2	34.7	29.4	31.3	32.1	31.7	30.6	32.2	31.3	31.7	Ь	
Cl	34.4	33.4	28.6	31.1	32.9	31.6	30.6	32.3	31.7	31.5	32.1	
Br	32.3	32.4	28.0	30.6	33.1	31.6	30.5	32.5	31.8	31.6	32.3	
Ι	30.7	31.7	27.6	30.0	33.3	31.7	30.8	32.1	31.8	31.6	32.1	

^a All coupling constants are in Hz and within ± 0.2 Hz in CDCl₃ at room temperature. ^bCould not be measured accurately due to peak overlap.

have not yet been explored.^{3,4,10-12} The development of the INADEQUATE pulse sequence by Freeman et al.⁷ to measure ¹³C-¹³C coupling constants in natural-abundance ¹³C NMR spectra seems to open up a new avenue to study substituent and stereochemical effects on $J_{\rm CC}$ in a wide variety of compounds. The most suitable model compounds for such investigations are those having rigid frameworks with well-defined geometries, such as derivatives of diamondoid hydrocarbons. We recently reported¹³ our study on substituent effect on ¹³C-¹³C NMR coupling constants (SCC) in 1- and 2-substituted adamantanes. Two- and three-bond ¹³C-¹³C NMR coupling constants in 2-substituted adamantanes have also been reported.¹⁴ In continuation of our study on SCC in diamondoid molecules we now report the results of our studies on 1- and 4-substituted diamantanes (1 and 2, respectively).

(10) Barna, J. C.; Robinson, M. J. T. Tetrahedron Lett. 1979, 1459.

Table IV. One-Bond ¹³C-¹³C Coupling Constants in 4-Substituted Diamantanes (2)^a

					• •		
х	$J_{3,4}$	$J_{2,3}$	$J_{1,2}$	$J_{1,13}$	$J_{8,9}$	other	
Н	31.6	ь		ь	31.6		
CH_3	32.2	32.2	30.5	32.2	31.7	37.2	
OCH ₃	35.9	31.3	30.5	Ь	31.8		
F	35.7	32.0	30.6	32.2	31.7		
C1	33.7	30.6	30.7	32.2	31.7		
Br	33.1	29.7	30.6	32.1	31.6		
I	32.4	29.4	30.6	32.2	31.6		

^aAll coupling constants are in Hz and are within ± 0.2 Hz in $CDCl_3$ at room temperature. ^bCould not be measured due to peak overlap.

Results and Discussion

The ¹³C chemical shifts ($\delta_{\rm C}$) and one-bond carbon–carbon coupling constants in 1-substituted diamantanes (1) and 4-substituted diamantanes (2) were measured along with those of the parent diamantane (1-H). The chemical shifts of some of the mono-substituted diamantanes have been reported earlier.¹⁵⁻¹⁷ However, present study includes a more extended series of substituents and for comparison all the ¹³C NMR chemical shifts in the diamantane derivatives studied in this work are listed in Tables I and II. The assignment of the chemical shifts is in accord with those already reported¹⁶⁻¹⁸ or based on proton multiplicities

 ⁽¹¹⁾ Neszymely, A.; Lukacs, G. J. Am. Chem. Soc. 1982, 104, 5342.
 (12) Marshall, J. L.; Canada, E. D., Jr. J. Org. Chem. 1980, 45, 3123.
 (13) Krishnamurthy, V. V.; Iyer, P. S.; Olah, G. A. J. Org. Chem. 1983,

^{43, 3373} (14) Berger, S.; Zeller, K. P. J. Chem. Soc., Chem. Commun. 1976, 649. We regret that inadvertently we missed quoting this work in our earlier paper.¹³

⁽¹⁵⁾ Duddeck, H.; Hollowood, F.; Karim, A.; McKervey, M. A. J. Chem. Soc., Perkin Trans. 2 1979, 360 and references therein.

⁽¹⁶⁾ Olah, G. A.; Shih, J. G.; Singh, B. P.; Gupta, B. G. B. Synthesis 1983, 713.

⁽¹⁷⁾ Olah, G. A.; Shih, J. G.; Krishnamurthy, V. V.; Singh, B. P. J. Am. Chem. Soc. 1984, 106, 4492. (18) LeCoeq, C.; Lallemand, J.-Y. J. Chem. Soc., Chem. Commun.

^{1981, 150.}

Table V. Comparison of Substituent Effect on ¹³C Chemical Shifts (SCS) in Bridgehead-Substituted

Adamantanes and Diamantanes ⁻ -								
X	1-Ad-2	X ^b	1-X	2-X				
CH ₃	+1.4	4	-3.7	+1.7				
OCH ₃	+43.	4	+36.0	+43.5				
F	+63.	+63.8		+66.4				
Cl	+39.	+39.8		+41.2				
Br	+38.	0	+41.0	+39.2				
Ι	+22.	1	+32.7	+23.4				
Х	1-Ad-X ^b	C ₂	C ₁₃	2-X				
CH ₃	+7.0	+4.4	+8.5	+7.0				
OCH ₃	+3.4	+1.8	+0.8	+2.4				
F	+5.0	+4.0	+4.6	+4.5				
Cl	+9.7	+7.2	+10.9	+9.4				
Br	+11.5	+8.3	+13.1	+11.1				
I	+14.5	+10.3	+17.2	+14.4				
	X CH ₃ OCH ₃ F Cl Br I X CH ₃ OCH ₃ F Cl Br I	$\begin{array}{c c} X & 1-Ad-2 \\ \hline CH_3 & +1. \\ OCH_3 & +43. \\ F & +63. \\ Cl & +39. \\ Cl & +38. \\ I & +22. \\ \hline X & 1-Ad-X^{\delta} \\ \hline CH_3 & +7.0 \\ OCH_3 & +3.4 \\ F & +5.0 \\ Cl & +9.7 \\ Br & +11.5 \\ I & +14.5 \\ \end{array}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	X 1-Ad-X ^b 1-X CH_3 +1.4 -3.7 OCH_3 +43.4 +36.0 F +63.8 +56.7 Cl +39.8 +38.8 Br +38.0 +41.0 I +22.1 +32.7 X 1-Ad-X ^b C_2 C_{13} CH_3 +7.0 +4.4 +8.5 OCH_3 +3.4 +1.8 +0.8 F +5.0 +4.0 +4.6 Cl +9.7 +7.2 +10.9 Br +11.5 +8.3 +13.1 I +14.5 +10.3 +17.2				

^aAll SCS values are in ppm and are within ± 0.1 ppm. ^bReference 13.

observed in APT (attached proton test)¹⁸ spectra. The $^{13}C^{-13}C$ NMR coupling constants listed in Tables III and IV were obtained from natural abundance spectra using the INADEQUATE⁷ pulse sequence.

¹³C NMR Chemical Shifts. Substituent effects on ¹³C chemical shifts (SCS) in substituted adamantanes, diamantanes, and triamantanes have been studied earlier by Duddeck et al.¹⁵ Since the present study includes additional substituents, the α -SCS and β -SCS values in 1- and 4-substituted diamantanes are compared with those in 1-substituted adamantanes^{13,15} in Table V.

Analysis of the α -SCS values in Table V indicates that the α -substituent effect is the same in 1-adamantyl and 4-diamantyl derivatives. However, the α -SCS values are quite different in the 1-diamantyl derivatives. It has been pointed out^{15,19} that for bridgehead-substituted compounds the large differences in α -SCS are mainly caused by the varying number of the gauche interactions (XC)²⁰ between

the substituent X and the γ carbon atoms. The gauche interaction XC replaces the interaction HC so that the net contribution from the X-C interaction is [XC-HC].¹⁹ In 4-substituted diamantanes and 1-substituted adamantanes no [XC-HC] interaction is present, whereas in 1-substituted diamantanes two γ -gauche interactions exist. From these α -SCS values [XC-HC] contributions can be estimated (±1 ppm): $[CC-HC] \sim -3$ ppm; $[OC-HC] \simeq -4$ ppm; [FC-HC] \simeq -4 ppm; [ClC-HC] \simeq -1 ppm; [BrC-HC] $\simeq +1$ ppm; [IC-HC] $\simeq +5$ ppm. From these estimates a qualitative sequence of the XC interactions can be deduced: $IC > BrC > HC > ClC > CC > OC \simeq FC$. Earlier, on the basis of a limited number of γ -gauche interaction estimates it was stated¹⁵ that the XC gauche interactions are governed neither by the electronegativity of X nor by steric repulsion. However, in the present study we have estimated the XC gauche interactions for all the halogen substituents and an oxygen substituent. From this qualitative sequence it can be concluded that the XC gauche interactions are governed both by electronegativity

of X and by steric repulsion. The "electronegativity" contribution seems to be a shielding effect and the "steric" contribution is a deshielding one. Among the halogen series the electronegativity effect dominates for F and Cl while the steric effect dominates for Br and I. However, it seems to be premature at this point to evaluate the individual contributions.

 β -SCS values (cf. Table V) in 1-adamantyl and 4-diamantyl derivatives are comparable while the two β -SCS values ($\Delta \delta_{C_{13}}$ and $\Delta \delta_{C_2}$) in 1-diamantyl derivatives are quite different. The β -SCS values for C₁₃ is generally higher than the β -SCS values for C₂ or C₁₂. This has been earlier¹⁵ attributed to the presence of two C_{γ'} atoms (C₇ and C₁₁ in structures A and B, respectively) antiperiplanar to C₁₃

while one exists for C_2 (C_{14} in structure B) and C_{12} (C_3 in structure A). This has been explained by a delocalization of the charge polarization at the β -carbon atom via an interaction of the C_{α} - C_{β} with the parallel $C_{\beta'}$ - $C_{\gamma'}$; bond orbital.¹⁵

¹³C-¹³C NMR Coupling Constants. The C_3-C_4 coupling constant $(J_{3,4})$ in diamantane (1-H) is the same as that in adamantane itself (31.6 Hz). However, the C_2-C_3 coupling constant $(J_{2,3})$ could not be measured in diamantane. The C_2 and C_3 resonances are too close to each other and thus represent a strongly coupled AB spin system. Reasonable signal-to-noise ratio could not be achieved to identify the outer weak peaks of this AB quartet. Our earlier study¹³ on 1- and 2-substituted adamantanes has shown that methyl groups have only a limited effect on the $C_{\alpha}-C_{\beta}$ coupling constants $(J_{\alpha,\beta})$ and no effect on the $C_{\beta}-C_{\gamma}$ and $C_{\gamma}-C_{\delta}$ coupling constants $(J_{\beta,\gamma}$ and $J_{\gamma,\delta})$. Thus in the following discussion the coupling constants in methyldiamantane would be taken as the reference values.

(a) 4-Substituted Diamantanes. The C_4 - C_3 (C_a - C_b) coupling constant $(J_{3,4})$ in 4-substituted diamantanes (2-X) decreases in the order 2-F \simeq 2-CH₃O > 2-Cl > 2-Br > 2-I \simeq 2-CH₃ > 2-H. The substituent effect observed on the $J_{3,4}$ values is qualitatively correlated with the inductive electron-withdrawing ability (or electronegativity) of the substituent. For example, in 4-fluorodiamantane (2-F), with the most electron-withdrawing substituent the C_{α} - C_{β} coupling constant is 35.7 Hz (3.5 Hz larger than that in 4-methyldiamantane, 2-CH₃, or 4.1 Hz larger than that in diamantane) whereas in 4-iododiamantane (2-I) the value is 32.4 (only 0.8 Hz larger than that in diamantane). This qualitative relationship between $J_{3,4}$ and the electronegativity of the substituents in 2-X is in line with the earlier observation in 1-substituted adamantanes¹³ and in tertbutyl derivatives.^{13,21}

The C_{β} - C_{γ} (C_3 - C_2) coupling constants ($J_{3,2}$) in 4-substituted diamantanes follow the trend 2-F > 2-OCH₃ > 2-Cl > 2-Br > 2-I. This trend is again in line with the earlier observation in substituted adamantanes. Although

⁽¹⁹⁾ Beierbeck, H.; Saunders, J. K. Can. J. Chem. 1975, 53, 1307; 1976, 54, 632.

⁽²⁰⁾ The abbreviations for the gauche interactions follows those given in ref 18.

⁽²¹⁾ Summerhays, K. E.; Maciel, G. E. J. Am. Chem. Soc. 1972, 94, 8348.

this trend is the same as that observed in $C_{\alpha}-C_{\beta}$ (C_4-C_3) coupling constants, it must be noted that the substituent effects are in the opposite direction. In other words, while J_{C-C_3} increases on substitution, J_{C-C_3} decreases.

 $J_{C_a-C_{\beta}}$ increases on substitution, $J_{C_{\beta}-C_{\gamma}}$ decreases. The substituents have very little effect on the coupling constants between the remote carbons.

(b) 1-Substituted Diamantanes. The $C_{\alpha}-C_{\beta}$ (C_1-C_2 and C_1-C_{13}) and $C_{\beta}-C_{\gamma_{anti}}$ (C_2-C_7 and $C_{13}-C_9$) coupling constants in 1-substituted diamantanes (1-X) follow the same qualitative trend as observed in 4-substituted diamantanes and 1-substituted adamantanes.¹³ However the coupling constant values in 1-substituted diamantanes are of further interest in that there are two $C_{\alpha}-C_{\beta}$ (C_1-C_2 and C_1-C_{13}) and two $C_{\beta}-C_{\gamma_{anti}}$ bonds (C_2-C_7 and $C_{13}-C_9$) in this case.

A closer examination of the coupling constant values in Table III reveals that the magnitude of the substituent effect on $J_{1,2}$ is larger compared to that on $J_{1,13}$. The $J_{1,2}$ value increases by 4.5 Hz on going from 1-iododiamantane to 1-fluorodiamantane, while $J_{1,13}$ increases only by 3.0 Hz. Similarly, the magnitude of the substituent effect on $J_{2,7}$ is more compared to that on $J_{13,9}$. The $J_{2,7}$ value changes by 1.8 Hz between 1-iododiamantane and 1-fluorodiamantane, while $J_{13,9}$ changes only by 1.3 Hz. If one examines the Newman projection formulae through the $C_{\alpha}-C_{\beta}$ bonds, it is evident that in one case ($C_{\beta}:C_{2}$) there is a C-X gauche interaction while in the other ($C_{\beta}:C_{13}$) there is none.

As discussed earlier the trends observed in the substituent effect on the α -carbon chemical shifts (α -SCS) and the β -carbon chemical shifts (β -SCS) can be interpreted in terms of the number of gauche interactions.¹⁵ It is quite possible that similar gauche interactions between the substituent and C₃ may be responsible for the observed differences in the α -SCS and β -SCS values in 1-substituted diamantanes.

The C₂-C₃ coupling constant in 1-X is also of interest in that the C₂-C₃ bond is gauche to the C₁-X bond. It can be noted that the C₂-C₃ (C_β-C_{γ_{nyn}) coupling constant increases as the bulkiness of the heteroatom containing the lone pair electrons increases (i.e., I > Br > Cl > O > F). It has been shown earlier that no substituent effect is observed with bulky alkyl subs⁺ituents.¹³ This gauche effect by the lone-pair electrons on C_β-C_{γ_{nyn} coupling constant is in line with our earlier observation in 2-substituted adamantanes and also with that observed by Barna and Robinson¹⁰ in the derivatives of piperidine and cyclohexanone.}}

As in the case of 4-substituted diamantanes no significant substituent effect was observed on coupling constants between the remote carbons.

Conclusions

We have determined the substituent effect on one-bond $^{13}C^{-13}C$ NMR coupling constants in a series of 1- and 4substituted diamantanes, remarkably rigid cage compounds, particularly suited to evaluate steric interactions. The substituent effect on the ^{13}C NMR chemical shifts (α -SCS and β -SCS) and on $^{13}C^{-13}C$ coupling constants (C_{α} - C_{β} SCC, C_{β} - $C_{\gamma_{anti}}$ SCC, and C_{β} - $C_{\gamma_{syn}}$ SCC) were evaluated in terms of the electronegativity and steric effects of the substituent and in terms of the number and type of gauche interactions. The present results are complimentary to our earlier reported study¹³ on substituted adamantanes and extend our understanding of the effect of substituents on ${}^{13}C-{}^{13}C$ NMR coupling constants and the qualitative trends discussed in terms of electronegativity effects and gauche interactions. However, more detailed experimental and theoretical studies are needed before more quantitative evaluation of these substituent effects will be possible.

Experimental Section

All diamantane derivatives were prepared from diamantane²² through various literature routes. 1-Bromodiamantane, 1-Br [mp 221-222 °C (lit.²³ mp 222-224 °C)], was prepared from direct bromination of diamantane.²³ Other 1- and 4-substituted diamantanes were prepared from the corresponding diamantanols, 1-OH [mp 287-290 °C (lit.²² mp 291-292 °C)] and 2-OH [mp 253-254 °C (lit.²² mp 256-257 °C)], which were in turn prepared from diamantane itself.²² 4-Bromodiamantane, 2-Br [mp 125-126 °C (lit.²² mp 127-128 °C)], was prepared by the reaction of 4diamantanol with 48% HBr.²² Conversion of diamantanols to the corresponding fluorodiamantanes, 1-F [mp 223-224 °C (lit.17 mp 223-224 °C)] and 2-F [mp 218-220 °C (lit.¹⁷ mp 218-220 °C)], was achieved by using PPHF reagent.24 Diamantanols could be converted to the corresponding iododiamantanes, 1-I [mp 160-163 °C. Anal. Found: C, 53.21; H, 6.34; I, 40.45. Calcd C, 53.5; H, 6.1; I, 40.4] and 2-I [mp 130-131 °C. Anal. Found: C, 53.41; H, 6.30; I, 40.41. Calcd C, 53.5; H, 6.1; I, 40.4%] using CH₃SiCl₃/ Nal.²⁵ Reaction of diamantanols with SOCl₂/Py yielded the corresponding chlorodiamantanes, 1-Cl [mp 244–245 °C (lit.²² mp 250–252 °C)] and 2-Cl [mp 73–74 °C (lit.²² mp 75–76 °C)]. Diamantanols can be methylated to the corresponding methoxy diamantanes, 1-OCH₃ [mp 115-116 °C. Anal. Found: C, 82.64; H, 10.01; O, 7.3. Calcd C, 82.6; H, 10.1; O, 7.3] and 2-OCH₃ [mp 81-83 °C. Anal. Found: C, 82.45; H, 10.25; O, 7.35. Calcd C, 82.6; H, 10.1; O, 7.3], using CH_3I/NaH^{15} 1-Methyl and 4methyldiamantanes, 1-CH₃ [mp 212-214 °C (lit.²⁶ mp 215-218 °C)] and 2-CH₃ [mp 96-97 °C (lit.26 mp 98-99 °C)], were prepared by the reaction of CH₃MgBr with the corresponding bromodiamantanes.²⁶ All compounds used were purified (>99%) by recrystallization or by chromatography and gave satisfactory NMR spectra.

Proton noise decoupled ¹³C NMR, APT (attached proton test or spin-echo Fourier transform) ¹³C NMR, and ¹³C satellite spectra were recorded at 50 MHz on a Varian XL-200 superconducting NMR spectrometer equipped with a variable-temperature broad-band probe. All the spectra were recorded in CDCl₃ at room temperature (~ 20 °C) unless otherwise stated.

The pulse sequence used for the ¹³C satellite spectra, based on Freeman et al.,⁷ is 90° (x)- τ -180° (±y)- τ -90° (x)- Δ -90° (ϕ)-Acq (ψ), where $\tau \simeq (2n + 1)/4J_{CC}$, Δ is a very short delay ($\sim 10 \ \mu$ s) needed to reset the radiofrequency phase, and ϕ and ψ are the phase of the last 90° "read" pulse and the receiver, respectively. Optimum setting of τ for direct coupling is when n = 0 and thus set at 7.0 ms (corresponding to a J_{CC} value of ~ 36 Hz). The repetition rate of this sequence is ~ 10 s, and reasonable signal to noise ratio was achieved in 6-8 h of acquisition.

Acknowledgment. Support of our work by the National Institutes of Health is gratefully acknowledged.

Registry No. 1 (X = H), 2292-79-7; 1 (X = CH₃), 26460-76-4; 1 (X = OCH₃), 95193-09-2; 1 (X = F), 77052-09-6; 1 (X = Cl), 32401-16-4; 1 (X = Br), 30545-17-6; 1 (X = I), 77062-71-6; 2 (X = CH₃), 28375-86-2; 2 (X = OCH₃), 95193-10-5; 2 (X = F), 77052-10-9; 2 (X = Cl), 32401-17-5; 2 (X = Br), 30545-30-3; 2 (X = I), 77052-11-0.

⁽²²⁾ McKervey, M. A.; Courtnay, T.; Johnston, D. E.; Rooney, J. J. J. Chem. Soc., Perkin Trans. 1 1972, 2691.

⁽²³⁾ Gund, T.; Schleyer, R. v. R.; Unruh, G. D.; Gleicher, G. J. J. Org. Chem. 1974, 39, 2995.
(24) Olah, G. A.; Welch, J. T.; Vankar, Y. D.; Nojima, M.; Kerekes, I.;

⁽²⁵⁾ Olah, J. A. J. Org. Chem. 1979, 44, 3872. (25) Olah, G. A.; Husain, A.; Singh, B. P.; Mehrotra, A. K. J. Org.

⁽²⁰⁾ Otali, O. A., Husani, A., Shigi, D. T., Melinota, H. H. O'o's Chem. 1983, 48, 3667.

⁽²⁶⁾ Osawa, É.; Mejerski, Z.; Schleyer, P. v. R. J. Org. Chem. 1971, 36, 205.